Chondroitin Sulfate is the Primary Receptor for a Peptide-Modified AAV That Targets Brain Vascular Endothelium In Vivo
نویسندگان
چکیده
Recently, we described a peptide-modified AAV2 vector (AAV-GMN) containing a capsid-displayed peptide that directs in vivo brain vascular targeting and transduction when delivered intravenously. In this study, we sought to identify the receptor that mediates transduction by AAV-GMN. We found that AAV-GMN, but not AAV2, readily transduces the murine brain endothelial cell line bEnd.3, a result that mirrors previously observed in vivo transduction profiles of brain vasculature. Studies in vitro revealed that the glycosaminoglycan, chondroitin sulfate C, acts as the primary receptor for AAV-GMN. Unlike AAV2, chondroitin sulfate expression is required for cell transduction by AAV-GMN, and soluble chondroitin sulfate C can robustly inhibit AAV-GMN transduction of brain endothelial cells. Interestingly, AAV-GMN retains heparin-binding properties, though in contrast to AAV2, it poorly transduces cells that express heparan sulfate but not chondroitin sulfate, indicating that the peptide insertion negatively impacts heparan-mediated transduction. Lastly, when delivered directly, this modified virus can transduce multiple brain regions, indicating that the potential of AAV-GMN as a therapeutic gene delivery vector for central nervous system disorders is not restricted to brain vascular endothelium.
منابع مشابه
Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions.
The human parvovirus adeno-associated virus (AAV) infects a broad range of cell types, including human, nonhuman primate, canine, murine, and avian. Although little is known about the initial events of virus infection, AAV is currently being developed as a vector for human gene therapy. Using defined mutant CHO cell lines and standard biochemical assays, we demonstrate that heparan sulfate prot...
متن کاملP 61: MicroRNA as a Therapeutic Tool to Prevent Blood Brain Barrier Dysfunction in Neuroinflammation
Endothelial cells present in brain are unique and differ from other peripheral tissues in a number of ways, which ensures specific brain endothelial barrier properties. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation. Various microRNAs (miRNA) have been discovered in different cellular components of the blood bran barrier (BBB). miRNAs a...
متن کاملA selective tumor microvasculature thrombogen that targets a novel receptor complex in the tumor angiogenic microenvironment.
We have previously shown that part of the heparin-binding domain of the vascular endothelial growth factor (VEGF), designated HBDt, localizes very selectively to surfaces of the endothelial cells of i.t blood vessels. Here, we have coupled the HBDt to the extracellular domain of tissue factor (TFt), to locally initiate the thrombogenic cascade. In tumor-bearing mice, infusion of this HBDt.TFt r...
متن کاملOsteoarthrits: A revolution in treatment
Background: Glucosamine and chondroitin sulfate are integral components of articular cartilage and they have important role to the physiologic and mechanical properties of this tissue. Glucosamine is acting as the precursor of the disaccharide unit in glucosaminoglycans (GAGs) of Cartilage Materials and method: The use of glucosamine and chondroitin sulfate for the symptomatic treatment of os...
متن کاملThe B16F10 cell receptor for a metastasis-promoting site on laminin-1 is a heparan sulfate/chondroitin sulfate-containing proteoglycan.
Exposure to AG73, a synthetic peptide (LQVQLSIR) from the COOH-terminal region of the laminin alpha1 chain, induces a malignant phenotype in B16F10 melanoma cells. Coinjection of this peptide with the cells results in an increase of lung tumors and also the formation of liver tumors in approximately 50% of the mice (W. H. Kim et al., Int. J. Cancer, 77: 632-639, 1998). Here we have characterize...
متن کامل